Published: March 23, 2011
The Japanese electricians who bravely strung wires this week to all six reactor buildings at a stricken nuclear power plant succeeded despite waves of heat and blasts of radioactive steam.
Nuclear and Industrial Safety Agency, via Jiji Press, via AFP-Getty
Multimedia
Related
-
Tokyo Says Radiation in Water Puts Infants at Risk (March 24, 2011)
-
Forging Ahead on Nuclear Energy in Turkey (March 24, 2011)
The tasks include manually draining hundreds of gallons of radioactive water and venting radioactive gas from the pumps and piping of the emergency cooling systems, which are located diagonally underneath the overheated reactor vessels. The health warning that infants should not drink tap water — even in Tokyo, far from the stricken plant — raised alarms about extensive contamination.
“We’ve got at least 10 days to two weeks of potential drama before you can declare the accident over,” said Michael Friedlander, who worked as a nuclear plant operator in the United States for 13 years.
Western nuclear engineers have become increasingly concerned about a separate problem that may be putting pressure on the Japanese technicians to work faster: salt buildup inside the reactors, which could cause them to heat up more and, in the worst case, cause the uranium to melt, releasing a range of radioactive material.
Richard T. Lahey Jr., who was General Electric’s chief of safety research for boiling-water reactors when the company installed them at the Fukushima Daiichi plant, said that as seawater was pumped into the reactors and boiled away, it left more and more salt behind.
He estimates that 57,000 pounds of salt have accumulated in Reactor No. 1 and 99,000 pounds apiece in Reactors No. 2 and 3, which are larger.
The big question is how much of that salt is still mixed with water and how much now forms a crust on the reactors’ uranium fuel rods. Chemical crusts on uranium fuel rods have been a problem for years at nuclear plants.
Crusts insulate the rods from the water and allow them to heat up. If the crusts are thick enough, they can block water from circulating between the fuel rods at all. As the rods heat up, their zirconium cladding can ignite, which may cause the uranium inside to melt and release radioactive material.
Some of the salt might be settling to the bottom of the reactor vessel rather than sticking to the fuel rods. But just as a heating element repeatedly used to warm tea in a mug tends to become encrusted in cities where the tap water is rich with minerals, boiling seawater is likely to leave salt mainly on the fuel rods, Mr. Lahey said.
The Japanese have reported that some of the seawater used for cooling has returned to the ocean, suggesting that some of the salt may have flowed out again rather than remaining in the reactors. But clearly a significant amount remains.
A Japanese nuclear safety regulator said on Wednesday that plans were under way to fix a piece of equipment that would allow freshwater instead of seawater to be pumped into at least one of the reactors.
He said that an informal international group of experts on boiling-water reactors was increasingly worried about salt accumulation and was inclined to recommend that the Japanese try to flood each reactor vessel’s containment building with cold water in an effort to prevent the uranium from melting down. That approach might make it a harder to release steam from the reactors as part of the “feed-and-bleed” process that was being used to cool them down, but that was a risk worth taking, he said.
Public alarm in Japan about the crisis increased on Wednesday after officials announced that levels of radioactive iodine had been detected in Tokyo’s tap water.
Recent rains might have washed radioactive particles into the water, as the Japanese government suggested. But prevailing breezes for the past two weeks should have been pushing the radiation mostly out to sea. And until Wednesday, some experts had predicted that radioactive iodine would not be much of a problem, because the fission necessary to produce iodine — which breaks down quickly, with a half-life of just eight days — stopped within minutes of the earthquake on March 11. The fear is that more radiation is being released than has been understood.
Preventing the reactors and storage pools from overheating through radioactive decay would go a long way toward limiting radioactive contamination. But that would require pumping a lot of cold freshwater through them, which is not easily done.
The emergency cooling system pump and motor for a boiling-water reactor are roughly the size and height of a compact hatchback car standing on its back bumper. The powerful system has the capacity to propel thousands of gallons of water a minute throughout a reactor pressure vessel and storage pool. But that very power can also be the system’s Achilles’ heel.
The pump and piping are designed to be kept full of water. But they tend to leak and develop alternating pockets of air and water, said Mr. Friedlander, who said he had performed maintenance on the systems many times in his career.
If the pump is turned on without venting the air and draining the water, the water from the pump would hit the alternating pockets with enough force to blow holes in the piping. Venting the air and draining the water requires a technician to reach a dozen valves, sometimes using a ladder. The water is removed through a hose to the nearest drain, usually in the floor, that leads to machinery designed to remove radiation from the water.
The process takes a full 12 hours in a reactor that is operating normally, Mr. Friedlander said. But even then, the water in the pipes tends to become radioactively contaminated because the valves that separate it from the reactor are never entirely tight.
It is likely to be an even bigger problem when the water inside the reactor is much more radioactive than usual and is under extremely high pressure, as it has been in all three reactors at the Fukushima Daiichi plant at various times since the earthquake and tsunami.
Japanese government and power company officials expressed optimism on Wednesday morning that the crisis was close to being brought under control, only to encounter two reminders in the afternoon of the unpredictable difficulties that lie ahead.
Fukushima Daiichi’s Reactor No. 3 began belching black smoke for an hour late in the afternoon, leading its operator, Tokyo Electric Power Company, to evacuate workers. No. 3 is considered one of the most dangerous of the reactors because of its fuel — mixed oxides, or mox, which contain a mixture of uranium and plutonium and can produce a more dangerous radioactive plume if scattered by fire or explosions. The cooling system at Reactor No. 5, which was shut down at the time of the earthquake and has shown few problems since, also abruptly stopped working on Wednesday afternoon, said Hiro Hasegawa, a spokesman for Tokyo Electric.
“When we switched from the temporary pump, it automatically switched off,” he said. “We’ll try again with a new pump in the morning.”
219 comments:
«Oldest ‹Older 201 – 219 of 219buy tramadol online buy tramadol online with mastercard - tramadol 40 mg
cheap tramadol tramadol dosage 80 lb dog - buy tramadol online cod no prescription
generic xanax xanax bars withdrawal symptoms - best place to buy xanax online forum
generic xanax xanax side effects tremors - generic xanax 1 mg
alprazolam medication xanax overdose possible - long 1mg xanax urine
tramadol online tramadol que contiene - taking 4 50mg tramadol
tramadol online overnight tramadol compared to ultram - tramadol 50mg tablets dogs
carisoprodol 350 mg carisoprodol drug facts - buy vicodin online no prescription us
buy tramadol ultram tramadol 50 mg addiction - order tramadol online sweden
carisoprodol 350 mg buy carisoprodol 350mg - carisoprodol 350 mg dan
xanax online xanax 2mg dosage - xanax home drug test
buy cialis online cialis daily available usa - cialis daily tadalafil
cialis online cialis 10mg online - buy cialis online usa no prescription
http://landvoicelearning.com/#97734 buy tramadol overnight delivery - tramadol tablets dogs dosage
order klonopin klonopin peak - enhance klonopin high
buy tramadol online no prescription overnight tramadol for dogs dose - 100mg tramadol vs percocet
buy tramadol online buy tramadol online without prescriptions - buy tramadol for dogs usa
klonopin anxiety 2mg of klonopin for sleep - klonopin side effects for children
klonopin pill generic klonopin looks like - 2mg clonazepam klonopin
Post a Comment